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ABSTRACT
Star formation happens in a clustered way which is why the star cluster population of a particular

galaxy is closely related to the star formation history of this galaxy. From the probabilistic

nature of a mass function follows that the mass of the most massive cluster of a complete

population, Mmax, has a distribution with the total mass of the population as a parameter. The

total mass of the population is connected to the star formation rate (SFR) by the length of a

formation epoch.

Since due to evolutionary effects only massive star clusters are observable up to high ages, it is

convenient to use this Mmax(SFR) relation for the reconstruction of a star formation history. The

age distribution of the most massive clusters can therefore be used to constrain the star formation

history of a galaxy. The method, including an assessment of the inherent uncertainties, is

introduced with this contribution, while following papers will apply this method to a number

of galaxies.

Key words: galaxies: evolution – galaxies: formation – galaxies: star clusters – galaxies:

stellar content.

1 I N T RO D U C T I O N

During the last few years, it has been recognized that most and prob-

ably all stars form in embedded clusters (Lada & Lada 2003). The

observational work, notably by Larsen (2002), has established that

star clusters ranging from the oldest globular clusters to the youngest

low-mass objects have to be regarded as a continuous distribution by

mass – globular clusters are not fundamentally different from open

clusters but merely the upper mass end of the distribution. This has

been shown explicitly by Kroupa & Boily (2002) in the example

of the Milky Way Population II spheroid. Today, star clusters must

be viewed as the ‘fundamental building blocks’ of galaxies because

they also determine the morphological appearance of whole galaxies

through the physics of their formation (Kroupa 2005).

Star formation is therefore closely connected to the star cluster

distribution in a galaxy and thus it is expected that the star forma-

tion history (SFH) of a galaxy leaves its imprint on the star cluster

distribution. Since star clusters can live for a long time, the star clus-

ter distribution of a galaxy can be compared to a diary. Events like

interactions of galaxies lead to an enhanced star formation activity.

From this results a larger number of clusters being formed during

the interaction time. This qualitative statement is well known and

in this work we present a quantitative method to derive the SFH of

a galaxy directly from its star cluster content.

Until now, detailed SFHs can be determined only for galaxies

which are at a distance allowing individual stars to be resolved, i.e.

�E-mail: tmasch@astro.uni-bonn.de; pavel@astro.uni-bonn.de

within the local group up to ∼1 Mpc away. The colour–magnitude

diagram (CMD) which is thus obtained then allows the construction

of a SFH using theoretical isochrones.

In distant galaxies, however, star clusters appear as compact

sources whereas the individual stars give a homogeneous distri-

bution over the area. Modern instruments like the Hubble Space
Telescope make it possible to obtain a cluster age distribution and

mass distribution for galaxies beyond the distance where individ-

ual stars can be resolved, e.g. for M51 (Bastian et al. 2005; cluster

formation rate: Gieles et al. 2005) and M101 (Bianchi et al. 2005).

These galaxies lie at a distance of about 7 Mpc (M51: Takáts &

Vinkó 2006; M101: Kelson et al. 1996) which demonstrates the

potential of our new method.

A first approach to derive the SFH from a cluster age distri-

bution and mass distribution could simply be to use all observed

clusters in given time intervals. But, this would lead to wrong

results, clusters evolve and thus there are fewer clusters at high

ages. However, massive clusters evolve slowly, clusters with masses

�105 M� have lifetimes comparable to a Hubble time (Baumgardt

& Makino 2003). Weidner, Kroupa & Larsen (2004) found a re-

lation which establishes the connection between massive clusters

and the galaxy-wide star formation rate (SFR). During a forma-
tion epoch, a complete population of star clusters is formed, for

which the mass of the most massive cluster, Mmax, depends on

the SFR (the Mmax [SFR) relation]. Consequently, the SFH of a

galaxy can be regarded as a sequence of such formation epochs, in

which the most massive cluster carries the information about the

SFR.
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Since Weidner et al. (2004) used a deterministic law for the

Mmax(SFR) relation, we briefly re-analyse their argumentation, al-

lowing a distribution of the most massive cluster rather than a fixed

value for a given SFR. Then, we present the new method and con-

clude with testing it for some typical cases.

2 C O M P L E T E P O P U L AT I O N S A N D T H E
Mmax( SFR) R E L AT I O N

2.1 Complete populations

The distribution of star clusters in a star cluster population is char-

acterized by the shape of the distribution function [shown to be a

power law; e.g. Weidner & Kroupa (2006) and references therein],

the mass of the population, Mtot, and the mass limits, Mmin and Mmax.

The cluster mass function can be written as

ξcl(M) = dN

dM
= k M−β, (1)

where the normalization constant k is determined by Mtot, Mmin and

Mmax.

In this context, complete population denotes a statistically mean-

ingful representation of the embedded cluster mass function. The

underlying distribution function is defined on a mass interval appro-

priate to the mass of the population. This is a very general concept

which is applicable to other cases where objects obey a distribution

function, e.g. stars in a star cluster.

The lower mass limit, Mmin, is given by the physical minimum

mass of a star cluster and is independent of the mass of the popula-

tion. Until now, the physical minimal mass of a star cluster is not well

known; here it is assumed to be 5 M� corresponding to groups of

about a dozen stars such as those forming in Taurus–Auriga (Briceño

et al. 2002).

For the upper mass limit, Mmax, two cases have to be distin-

guished: if a complete population has a mass which is larger than

the limiting physical maximum cluster mass, then the distribution

function is defined up to the physical maximum mass, a hitherto

not well-understood quantity. Star clusters with masses larger than

about 106 M� show complex stellar populations and are probably

distinct from the ‘normal’ star cluster content of a galaxy (Weid-

ner et al. 2004). Such arguments based on the structural proper-

ties of clusters would imply the same physical maximum mass in

all galaxies. Gieles et al. (2006) derived maximal cluster masses

from the cluster luminosity function, obtaining masses between

0.5 and 2.5 × 106 M� for NGC 6946, M51 and the ‘Antennae’

(NGC 4038/39). Thus, while arguments exist for a limiting max-

imum star-cluster mass below which stellar populations are simple

(mono-metallic and mono-age), Mieske, Hilker & Infante (2002)

and Martini & Ho (2004) show that ultra-compact dwarf galaxies

(M � 106 M�) may be an extension of the ‘cluster’ formation pro-

cess to large masses. Consequently, we do not limit the ‘cluster’

masses but allow these to formally reach Mmax = 109 M� for suf-

ficiently high SFRs.

The case that Mtot is smaller than the physical maximal mass

implies that no star clusters more massive than Mtot can exist in this

population. Therefore, Mtot is the upper mass limit of the cluster

mass function. This includes the case that a population can consist

only of one cluster with the mass Mtot, but this is very improbable.

Thus, by using the total mass as the normalization criterion,

Mtot =
∫ Mmax

Mmin

Mξcl(M) dM, (2)

the normalization constant becomes

k = Mtot(2 − β)

M2−β
max − M2−β

min

. (3)

The total number of clusters in a population, Ntot, follows from

Ntot(Mtot) = ∫ Mmax

Mmin
ξcl(M) dM .

Weidner et al. (2004) argued that a complete population of star

clusters is not made up by all clusters ever formed in a galaxy, but

by a subset of clusters formed during a formation epoch. Assuming

that all stars form in star clusters, the total mass of a complete

population is then given by the product of the SFR and the length

of the formation epoch,

Mtot = SFR × δt . (4)

Thus, given a certain (short) δt, the total mass and thereby implic-

itly the upper mass limit of the distribution function depend on the

current SFR. With this description, massive clusters can only form

if there is much star-forming activity, while quiescent phases only

produce low-mass clusters.

2.2 The Mmax(SFR) relation

Observations give evidence that the brightness of the brightest clus-

ter in a galaxy depends on the present-day SFR in the galaxy (Larsen

2002). Since the brightest cluster in a galaxy is usually young, it can

be interpreted as the most massive cluster of the current formation

epoch. Weidner et al. (2004) converted the luminosities to masses,

as shown in Fig. 1. The data show a large scatter which in our inter-

pretation results from the distribution of the most massive cluster.

Since the distribution of Mmax for a given Mtot is known, the data

can be used to determine the length of the formation epoch.

In our description of star cluster populations, the upper mass

limit, Mmax, and the most massive cluster, Mmax, are not identical.

For an ensemble of populations with the same total mass, Mmax has

/

/ /

Figure 1. Masses of the brightest clusters versus present-day SFR in galax-

ies, data from Larsen (2002) [absolute magnitudes converted to masses by

Weidner et al. (2004)]. The lines shown with the data are based on our sta-

tistical point of view, presented in Section 2.2. The parameters δt and β

are chosen to fit to the data with δt = 10 Myr, β= 2.4 and Mmin = 5 M�.

The solid line is the expectation value for the distribution of the most massive

cluster (equation 6) in dependence of the total mass of the population. The

dashed lines are the borders of the region in which two-thirds of all most

massive clusters are expected, calculated using equation (5).
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Figure 2. The distribution of Mmax for a population with Mtot = 104 M�,

β = 2.4 and Mmin = 5 M�. The number of Mmax expected to lie below and

above the average Mmax is different due to the asymmetry. The median, M1/2,

has a different value than the average. Two-thirds of all Mmax are expected

in the region delimited by lines marked with 1/6 → and ← 1/6.

a distribution parametrized by Mtot and β (cf. Oey & Clarke2005).

This distribution can be written as a probability density,

φ(Mmax) =
[

1

Ntot

∫ Mmax

Mmin

ξcl(M) dM

]Ntot−1

ξcl(Mmax), (5)

where Ntot and the normalization of ξ cl depend on Mtot. This is

different to the ansatz of Weidner et al. (2004) where Mmax was

assumed to be identical for all populations with the same Mtot, i.e.

not distributed. The distribution of Mmax is asymmetric because of

the asymmetric cluster mass function and is characterized by the

average mass of the most massive cluster, Mmax, given by

Mmax =
∫ Mmax

Mmin

M ′
maxφ(M ′

max) dM ′
max. (6)

Fig. 2 shows the distribution of Mmax and the location of Mmax. Due

to the asymmetry, the median, M1/2, does not have the same location

as the average, Mmax, but lies below it. Therefore, it is expected that

in an ensemble more Mmax lie below Mmax than above.

The observations shown in Fig. 1 are an ensemble of most massive

clusters of populations with different total masses. Since φ(Mmax)

is parametrized by Mtot, it is possible to derive the average Mmax in

dependence of Mtot and via equation (4) also in dependence of the

SFR. This analytical curve could be compared to a line derived from

observations e.g. by least-squares fitting. The least-squares fitting

procedure would give a line that leads through the region where most

of the Mmax are, but this does not match Mmax due to the asymmetry

of φ (Mmax). Most of the Mmax lie below Mmax.

To constrain δ t from the observations, it is more convenient to

use the region where a certain fraction of the data is expected. The

location of this region – at high or low values of Mmax – depends on

the duration of the formation epoch: a long formation epoch pushes

the region towards high masses and a short formation epoch to lower.

A larger β steepens the relation. The best-fitting region where two-

thirds of the most massive clusters are expected is shown in Fig. 1.

As found by Weidner et al. (2004), the values of δt = 10 Myr and

β = 2.4 provide a good fit to the data. Complete populations of

star clusters form in formation epochs lasting for 10 Myr which is

comparable to the time-scale of the emergence of cluster populations

from spiral arms (Egusa, Sofue & Nakanishi 2004; Bonnell et al.

2006).

3 A M E T H O D TO D E R I V E S TA R F O R M AT I O N
H I S TO R I E S U S I N G S TA R C L U S T E R S

3.1 Concept and restrictions

The analysis of the Mmax(SFR) relation suggests that the SFH of a

galaxy can be interpreted as a sequence of formation epochs lasting

for ≈10 Myr. A star cluster population with a total mass determined

by the current SFR emerges during each formation epoch. There-

fore, it should be possible to infer the SFR from the properties of

this population, but for the largest part of the lifetime of a galaxy

only a small fraction of coeval clusters is observable making the

determination of the population mass difficult.

On this account, we propose a different approach using only the

most massive clusters of each formation epoch. The mass of the most

massive cluster also depends on the current SFR, but the distribution

of them does not allow the derivation of the SFR from only one
most massive cluster. If it is assumed that the galaxy-wide SFR

changes significantly only on a time-scale that includes a number of

formation epochs, then the clusters of this set of formation epochs

can be seen as an ensemble of identical cluster populations. For

the ensemble average of the most massive clusters, the mass of

the population can be calculated using the Mmax(SFR) relation. The

probability density φ(Mmax) is parametrized by Mtot = SFR × δt
and β and consequently also Mmax, written symbolically as

Mmax = f (SFR), (7)

where f(SFR) is given by the integral of equation (6). Thus, the SFR

corresponding to this ensemble follows by inversion of the previous

equation,

SFR = f −1(Mmax). (8)

The inversion of the integral (f) is done numerically.

This gives the general idea to reconstruct SFHs: the lifetime of a

galaxy is divided into time windows containing a number of forma-

tion epochs. For each of the windows, the average mass of the most

massive clusters is calculated and from this mass the underlying

SFR is derived.

The age determinations of available cluster data for galaxies, as

e.g. the Large Magellanic Cloud (LMC) (Degrijs & Anders 2006),

usually have uncertainties of ≈0.4 dex. If the observational situa-

tion is optimal, i.e. observations in the most suitable filters could be

made, then the age uncertainty can be much smaller. de Grijs et al.

(2005) obtained �log (age/yr) � 0.15 ‘in the majority of cases’ for

conditions as for NGC 3310. Since it does not make any sense to try

to detect variations of the SFR on time-scales shorter than the age

uncertainties of the data, the averaging window has to be chosen to

have the same length (or longer) than the available age uncertainty.

Because the error is constant in logarithm, the length of the averag-

ing window depends on the age. We chose a length of 0.5 dex for

the averaging window. A sequence of neighbouring, independent

averaging windows leads to a SFH determined at discrete points in

time over the lifetime of a galaxy. For a continuous SFH, the aver-

aging window is moved in 10 Myr steps. At old ages, the length of

the averaging window is reduced to ensure that the oldest formation

epoch used in the averaging window contains a cluster. An aver-

aging window filled only halfway would lead to a systematically

underestimated SFR.
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As the averaging window increases with age, the minimum du-

ration of resolvable events in the SFH also increases. This is an

inherent restriction of our proposed method. Short bursts of star

formation which happened at large ages cannot be resolved.

3.2 Corrections for dynamical cluster evolution

The cluster ages and masses for large samples of clusters are usually

determined by fitting models to observed spectral energy distribu-

tions. The age and the ‘initial’ mass of a cluster are parameters for

the fitting routine. In all cases, the cluster mass is determined by

scaling a model ‘initial’ mass. Since the applied models usually

only consider mass loss due to stellar evolution and not due to dy-

namical evolution, the fitted mass of a cluster does not correspond

to the initial cluster mass for which the Mmax(SFR) relation is valid.

Star clusters are no isolated static objects: the gravitational force

keeps the stars in constant motion with respect to the centre of mass,

which itself moves on an orbit through the host galaxy. Stars can

evaporate from the region dominated by the cluster potential and

leave their star cluster. This mass loss of the cluster due to dynamical

evolution depends on the eccentricity of the orbit and the distance

to the galactic centre. Furthermore, it depends on the mass of the

host galaxy which determines the strength of the tidal field.

Since these parameters are mostly not available, the analytic

model from Lamers et al. (2005a) for the average mass loss suffered

by a cluster in a galaxy is used. Lamers et al. (2005a) find a good

agreement of their model with the results of Baumgardt & Makino

(2003), who gave a formula derived from N-body experiments.

For the statistical model adopted here, it is assumed that cluster

disruption depends only on the initial mass (Boutloukos & Lamers

2003). In this case, the initial mass can be calculated from the ob-

served mass and age using

Mi (t) =
[(

M

M�

)γ

+ γ t

t0

] 1
γ

, (9)

where γ = 0.62 is identical for all galaxies. t0 describes the tidal

field and can be determined from the dissolution time of a 104 M�
cluster,

t0 =
(

t4

660

) 1
0.967

. (10)

The parameter t4 has been determined for a number of galaxies

(cf. Boutloukos & Lamers 2003; Lamers, Gieles & Portegies Zwart

2005b).

3.3 Upper and lower limit for the SFH

The observed cluster content of a galaxy usually does not provide a

cluster for every formation epoch. The number of observed clusters

older than a few Gyr is much smaller than the number of formation

epochs. Degrijs & Anders (2006) found only ≈10 clusters older

than 4 Gyr in the LMC, as similarly Bastian et al. (2005) for M51.

This originates from a SFR which was so low that no clusters were

formed being massive enough to be visible today. The brightness

limit of the observations is therefore an upper limit for the bright-

ness of the actually formed most massive cluster. With a cluster

evolution model, the brightness limit at a given time can be con-

verted to an initial mass which then is the upper mass limit for the

most massive cluster. The GALEV models (Schulz et al. 2002) give

the luminosity evolution M(t) of a ‘simple stellar population’ (i.e.

single burst, single metallicity) with a mass of 1.6 × 109 M� for

different photometric bands. By scaling M(t) to the limiting mag-

nitude of the observation, Mlim, with the band chosen according to

the bands used in the cluster-mass fitting, the limiting mass can be

derived (cf. Hunter et al. 2003) as

Mlim(t) = 1.6 × 109+0.4(M(t)−Mlim) M�. (11)

The GALEV models do not take dynamical evolution into account,

therefore Mlim has also to be corrected for dynamical evolution as

described in the previous section (M = Mlim in equation 9).

Now, the SFH can be derived with Mlim as the most massive cluster

in those formation epochs that do not contain any clusters, leading

to the upper estimate of the SFH. Since Mlim increases for older

ages due to the internal evolution of clusters, the derived SFR also

increases, which does not necessarily reflect the underlying SFH.

The lower limit of the SFH is given by using Mmax = 0 in the

epochs containing no cluster, corresponding to the assumption that

during these epochs no star formation took place at all.

3.4 Self-consistency checks

In the next section, tests to analyse the systematic errors of our

method are made using modelled SFHs. For an observed nearby

galaxy, the obtained results can be compared to independently de-

termined quantities. The SFH derived using star clusters should be

similar to the one obtained using CMDs. This comparison can be

difficult if the used regions of the galaxy differ.

The total mass of stars in a galaxy can be calculated since

with our method a SFH for an entire galaxy is derived. For each

10-Myr epoch, a SFR has been determined, from which the mass of

the formed stars can be calculated. The sum over all epochs gives

the mass of the stellar content of the galaxy. When deriving this

mass, stellar evolution is not taken into account, i.e. all stars that

ever formed are counted regardless of whether they still exist or not.

This can be compared to independent determinations of the stellar

content of a galaxy.

Furthermore, the cluster formation rate should reflect the struc-

tures found in the SFH. For each most massive cluster, an appropriate

total number of clusters should exist. This comparison of the cluster

formation rate (i.e. number of clusters per time) and the SFH can

be done, for example, by using a cluster formation rate also derived

using a moving time window.

4 M O D E L L E D S TA R F O R M AT I O N H I S TO R I E S

To test our method, synthetic star cluster populations were generated

for different SFHs. The aim is to verify if an input SFH can be re-

extracted and to study the effects of the averaging. For this purpose,

we first consider the simplest case with optimal data, i.e. a constant

SFR and no measurement uncertainties for the age. Models with a

varying SFR that include the age uncertainties show the capacity of

our method. For clarity and to focus on the effects of the averaging

and age uncertainties, cluster evolution is only considered in the last

model (Fig. 9).

The general procedure of our models is as follows. In time-steps

of 10 Myr, complete cluster populations are generated with a total

mass given by equation (4) and the mass limits Mmin = 5 M� and

Mmax = min (Mtot, Mmax,phys) with Mmax,phys = 109 M�. Then, an age

uncertainty is assigned to each cluster with age τ , drawn randomly

from a Gaussian in logarithmic age, N (log10 τ ′; μ = log10 τ, στ ).

The values chosen for the variance σ τ are 0.15 and 0.35 dex, corre-

sponding to the typical uncertainty range of the SED fitting method

(de Grijs et al. 2005). Uncertainties larger than 0.5 were rejected and
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Figure 3. Test of the new method for a modelled constant input SFR (dashed

line in the lower part). In the upper part, the most massive clusters of each

10-Myr formation epoch are shown (dots). The solid line in the lower part

is the reconstructed SFH using the method described in the text.

generated again until they are smaller than 0.5. The procedure for

synthetic cluster evolution is described in the section of the respec-

tive model. For each 10 Myr interval, only the most massive cluster

is shown in Figs 3–5.

4.1 Constant SFR

Fig. 3 shows the distribution of the most massive clusters for a

constant input SFR (dashed line in the lower part) not including

age uncertainties. It appears as if the masses of the most massive

cluster increase with age, which is a size-of-sample effect. Due to

the logarithmic axis, 90 per cent of the clusters are in the age range

9 � log10 τ � 10; therefore, the probability to get a very massive

cluster by chance is higher in this range. Similarly, the probability

to sample clusters in the mass range below the average mass of the

/

/
/

/

Figure 4. Same as Fig. 3 but for a slowly linearly decreasing input SFH.

Here, an age uncertainty with σ τ = 0.15 dex was included, leading to the

decline at high ages as discussed in the text.

/
/

/

/

Figure 5. Same as Fig. 4 but for a SFH with three well-separated bursts.

most massive cluster (Mmax; equation 6) increases. This leads to the

wedge-like shape of the distribution of the most massive clusters.

The derived SFH (solid line) only shows a large variation at young

ages, where the large averaging window of 0.5 dex in log age con-

tains only a few 10 Myr formation epochs. Therefore, the recon-

structed SFH is calculated from too few clusters. For ages older

than ≈100 Myr, the reconstructed SFH agrees within the expected

statistical variations (as discussed in Section 4.3) with the input

SFH. The features in the reconstructed SFH at an age of 10 Gyr are

artefacts due to the shrinking averaging window.

4.2 Varying SFR

Fig. 4 shows the SFH obtained from a linearly decreasing SFR. In

this model, an age uncertainty with σ τ = 0.15 dex was included as

described above. This causes a systematic deviation of the recon-

structed SFH towards smaller SFRs at old ages. Although cluster

populations were only generated up to an age of 10 Gyr, the ages

of individual clusters can be allocated up to maximally log10 τ =
10 + 0.5. Thus, for many old formation epochs not the actual most

massive cluster corresponding to it is used but the second or third,

etc. most massive. Therefore, the SFR is underestimated. Besides

this effect introduced by the age uncertainties, the behaviour of the

reconstructed SFH is similar to the one of the previous model: the

reconstructed SFH follows the slow change of the input SFH within

the same degree of deviations. There is a large scatter in the SFH

for ages younger than ≈100 Myr. Also as in the constant case, the

artefacts at the oldest ages (log10 τ � 10.3) are visible. This model

allows us to conclude that our method is capable of reproducing

slowly changing SFHs.

The modelled SFH shown in Fig. 5 has three well-separated bursts

lasting from 0 to 200, 1000 to 1200 and 8800 to 10 000 Myr. During

the bursts, the SFR is increased by a factor of 10. Again, the cluster

ages were generated with an age uncertainty with σ τ = 0.15 dex.

Our method results in an undulating SFH with peaks roughly coin-

ciding with the centres of the bursts. The oldest burst is affected by

the decline of the reconstructed SFH due to the way how the age

uncertainties are assigned. Thus, the maximum is shifted towards

younger ages. In the reconstruction, the shape of the SFH is much

less pronounced than in the original. The age uncertainties and the
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averaging procedure lead to a larger width of the recovered bursts.

As the most massive clusters of a burst are spread over an inter-

val longer than the burst, the amplitude of a recovered burst also

decreases.

In Figs 3–5, the input SFHs guide the eye to see the appropriate

structure in the SFHs derived from the cluster distributions. The dis-

tribution of the most massive clusters, the age uncertainties and the

averaging process in our method lead to a much less distinct struc-

ture in the reconstructed SFH than in the initial one. In Section 4.4,

we present a criterion to decide which features in a reconstructed

SFH are caused by variations in the initial SFH and are not merely

due to systematic effects. For this purpose, it is necessary first to

investigate the systematic effects of our method, which is the object

of the next section.

4.3 Statistical scatter in the reconstructed SFH

The models presented above show that the input and the recon-

structed SFHs differ, especially for ages younger than ≈100 Myr.

Due to the small number of clusters used for the reconstructed SFH

in the respective formation epochs, the scatter in the reconstructed

SFH increases. To investigate the expected scatter in the recon-

structed SFHs, a sample of star cluster populations with the same

SFH was created. For each of the input SFHs, 1000 synthetic cluster

populations (i.e. 1000 galaxies) were generated with different ini-

tial random seeds and the SFH was re-extracted from the clusters.

Then, the sample average, SFR(t), was calculated for each formation

epoch,

SFR(t) = 1

1000

1000∑
i=1

SFRi (t), (12)

where SFRi(t) is the SFH of an individual cluster population i. To

achieve an estimate of the statistical spread, we calculated the posi-

tive and negative deviation, σ SFR+ and σ SFR−, from the average SFR

at a given time,

σSFR+(t) = 1

N+(t)

∑
SFRi (t)−SFR(t)>0

|SFRi (t) − SFR(t)| (13)

σSFR−(t) = 1

N−(t)

∑
SFRi (t)−SFR(t)<0

|SFRi (t) − SFR(t)|, (14)

where N±(t) is the number of SFRs larger or smaller than SFR(t)
at a given time t. This particular choice of an individual positive

and negative average deviation will be discussed after the average

SFHs.

Fig. 6 shows the results of the experiments. For the experiment

presented in Panel (a), a constant SFH without age errors was cho-

sen. The sample average and the input SFH agree well; differences

occur only for young ages. This is because of the small number

of formation epochs used for reconstructing the SFH at these ages.

Since the averaging window contains few epochs, the scatter in the

reconstructed SFH increases, which is also visible in the progress of

σ SFR±. The average deviations decrease with age because the num-

ber of formation epochs used for the reconstructed SFH increases as

a consequence of the averaging window which moves in logarithmic

time. At the oldest ages, the average deviation increases again since

the averaging window contains a decreasing number of formation

epochs with a cluster, which is the same effect as for young ages.

As described in Section 4.1, the SFH ends at the oldest ages with

an artefact.

/
/

/

Figure 6. Averaged reconstructed SFHs (thick solid lines) of a sample of

1000 synthetic cluster populations for different input SFHs (thin solid lines).

Also shown are the corresponding deviations, σ SFR+ and σ SFR−, as dis-

cussed in the text (dotted lines, equations 13 and 14). (a) Constant input

SFH, no age error. (b) Three well-separated bursts, age error σ τ = 0.15 dex.

(c) Three well-separated bursts, age error σ τ = 0.35 dex. (d) One burst per

Gyr, age error σ τ = 0.15 dex.

Panels (b) and (c) of Fig. 6 show the results for the SFH with

three bursts and different age uncertainties. For the smaller age un-

certainty, σ τ = 0.15 dex, all three epochs of enhanced star formation

can be identified, i.e. the variation of SFR(t) is comparable or larger

than σ SFR±(t). However, the reconstructed shape of the second and

the third burst is much wider and less pronounced. The larger age

uncertainties (σ τ = 0.35 dex) lead to a reconstructed SFH where

the SFR decreases with age and only allows the reconstruction of

the youngest burst. Due to the age uncertainties, SFR(t) drops at

old ages, as discussed in Section 4.2. The average deviations σ SFR±
behave similarly to the constant case.

In the case of one burst every Gyr, lasting for 200 Myr (Fig. 6,

Panel d), with the small age uncertainty (σ τ = 0.15 dex), only

the youngest burst can be detected. Then, the reconstructed SFH

declines until a minimum between the first and the second burst is

reached. From the second burst on, only a constant SFR with an

intermediate value can be recovered. σ SFR± has the same features

as before.
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Table 1. Original and reconstructed total masses of the stellar content for

the different input SFHs. Output Mtot is the ensemble average of the 1000

galaxies with the average deviation.

Model Input Mtot Output Mtot

(log10 M�) (log10 M�)

Fig. 6a) Constant SFR

no age error

0.01 M� yr−1 8.00 8.02 +0.02
−0.02

0.1 M� yr−1 9.00 9.01 +0.03
−0.03

1 M� yr−1 10.00 10.01 +0.04
−0.04

10 M� yr−1 11.00 11.01 +0.05
−0.04

Fig. 6b) Three bursts

σ τ = 0.15 dex 9.39 9.40 +0.05
−0.04

Fig. 6c) Three bursts

σ τ = 0.35 dex 9.39 9.41 +0.06
−0.04

Fig. 6d) One burst per Gyr

σ τ = 0.15 dex 10.45 10.48 −0.07
−0.05

A comparison of the averaged recovered SFHs and the input SFHs

of these models shows the capabilities of our method. Due to the

averaging process structures in the SFH on time-scales shorter than

the averaging window cannot be reconstructed. In the other cases,

the sensitivity for structures in the SFH depends on the quality of the

age determination. For the situation of a SFH only slowly varying

or with bursts that are well separated and small age errors, the shape

of the underlying SFH can be extracted with our method. Large age

errors of the star clusters or highly variable SFHs do not allow us

to recover all of the initial features in the derived SFH. However,

even in these cases the absolute value of the recovered SFR is of the

same order of magnitude as the actual one.

Thus, the total recovered stellar mass (Mtot,rec = ∫
SFR(t) dt)

corresponds to the underlying SFH, summarized in Table 1. The

ensemble average of Mtot,rec (average of the 1000 galaxies) equals

to the input value and no bias is introduced.

The second aim of the models is to investigate the scatter in the re-

constructed SFHs. Two properties of the average deviations, σ SFR+
and σ SFR−, are notable: first, in the log–log diagram the positive and

negative deviation have for a certain age approximately the same

distance to SFR(t). A reason for this effect could lie in the asym-

metric distribution of the most massive star cluster (Fig. 2). Thus,

using the average of σ SFR+ and σ SFR− would lead to a wrong un-

certainty estimate. The second property of both average deviations

is that their values relative to SFR are independent of the value of

SFR. This is visible in Fig. 7, where the quantities

σ̂SFR±(t) = σSFR±(t)

SFR(t)
, (15)

the relative average deviations, are plotted. To show the indepen-

dence of σ̂SFR± from the shape of a SFH, the SFHs from Fig. 6, Pan-

els (b)–(d), are used. The model with a constant SFR of 0.1 M� yr−1

(Fig. 6, Panel a), and additional models with 0.01, 1 and 10 M� yr−1

demonstrate the invariance from the absolute value of the SFR. The

independence of the relative average deviations from the shape and

absolute value of the SFH makes this quantity suitable for estimat-

ing the uncertainties of the method. For the implementation in our

method for deriving SFHs of individual galaxies, we used the ana-

lytic fitting formulae

σ̂SFR+(τ ) = 45

1 + exp 1.3(log10 τ − 5.4)
(16)

Figure 7. Relative errors (thin solid lines) for different constant SFHs with

a SFR of 0.01, 0.1, 1 and 10 M� yr−1 and for the bursting cases as above

(see Fig. 6). The thick solid line shows an upper envelope of the relative

error as described in the text (equations 16 and 17).

and

σ̂SFR−(τ ) = 1

1 + exp 1.2(log10 τ − 8.0)
. (17)

These fits are a conservative estimate and lie slightly above the

experimental data. In the method, the absolute average deviation is

then calculated by

σSFR±(τ ) = σ̂SFR±(τ ) × SFR(τ ). (18)

It will be used in the criterion to detect significant variations in a

SFH discussed below.

4.4 A criterion to detect significant variations in a SFH

Due to the probabilistic distribution of the most massive cluster

scatter in the reconstructed SFH is expected. As visible in Figs 3

and 4, the reconstructed SFH can mimic periods of reduced or en-

hanced star formation. However, the variations generated in this way

are not caused by real events. The average deviations derived in

the previous section can be used to give the region of SFHs compat-

ible with the reconstructed one. But to verify variations in a SFH,

we suggest to disproof the hypothesis that there are no variations.

This is done by setting up the null hypothesis of a constant SFH with

a SFR equal to the time-averaged SFR, 〈SFR〉, of the reconstructed

SFH. If the reconstructed SFH leaves significantly the 1σ SFR± re-

gion of the null hypothesis, a constant SFH can hardly be supported.

Thus, the actual SFH of the galaxy has to have variations. This is our

suggested criterion of significance. Note that this criterion implies

that troughs and maxima that result from a truly variable SFR differ

by more than 2σ SFR±.

〈SFR〉 is given by the integral over the SFH, divided by the time.

With our method two SFHs are reconstructed, the lower limit with

gaps where no cluster was observed and the upper limit with the

fading limit mass used in the gaps. Therefore, 〈SFR〉 has to be cal-

culated as the mean of the average SFR of both limits. In reality,

these limits start to differ for older ages, caused by incomplete-

ness due to cluster evolution and observational limits. Especially

in galaxies with strong cluster evolution, the upper limiting SFH
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Figure 8. Reconstructed SFHs from Figs 3–5 (top to bottom: constant, lin-

early decreasing, with three bursts; thick lines), shown with the null hypoth-

esis of a constant SFH (thin solid lines, 〈SFR〉). For a significant variation of

the reconstructed SFH, it has to cross the 1σ SFR± line (inner dotted lines).

The outer dotted lines are at 2σ SFR±.

can shift 〈SFR〉 towards unreasonable values if it is integrated over

all ages. To prevent this, we integrate only up to the age where the

logarithms of the upper and lower limit differ by less than 0.2.

The outcome of this procedure is displayed in Figs 8 and 9. Fig. 8

shows again the SFHs of Figs 3–5, now with the criterion for varia-

tions. Since in these models no cluster evolution was incorporated,

we integrated up to an age of 6 Gyr (where the thin solid line stops)

to obtain 〈SFR〉. In the constant case, the input SFR (0.1 M� yr−1)

and the average (〈SFR〉 = 0.12 M� yr−1) are in good agreement.

The extremes of recovered SFH barely exceeds the 1σ SFR± region.

Thus, the null hypothesis of a constant SFH cannot be rejected, as

is correct in this case.

The reconstructed linearly decreasing SFH lies, during most

times, far away from the average. At young ages, the recovered

SFH lies sometimes even below 2 σ SFR−, and before the decline due

to the age uncertainties at old ages it rises above 2 σ SFR+. From this

can be deduced that the null hypothesis is not consistent with the

reconstructed SFH. A clear trend of increase with age is visible.

The bursting case is harder to identify. Only the first burst (0–

200 Myr) and the last dip (1.2–8.8 Gyr) leave unambiguous traces,

albeit the shape is less pronounced than that of the underlying SFH.

The two other bursts and the first dip merely allow an ‘educated

guess’ of the shape of the actual SFH. As above, a constant SFH

is not consistent with the reconstructed SFH. However, the exact
structure of this SFH cannot be determined with sufficient certainty,

although it is visible.

The above cases show that our suggested criterion of significance

allows us to distinguish between features in the actual SFH and
artefacts due to the method.

/

/
/

/
Figure 9. Recovered SFH for a LMC-type cluster model that includes dy-

namical evolution and the missing of clusters due to the observational flux

limit (dashed line in the upper part). As previously, the upper panel shows

the cluster distribution, whereby here each cluster is shown with its current

mass after evolving it dynamically, and the lower panel contains the recon-

structed SFH (thick lines). Due to missing clusters, the reconstructed SFH

branches in two parts, as described in Section 4.5. The thin solid line is the

constant SFH (〈SFR〉) used to detect significant variations of the true SFH

and stops when the averaging is stopped. Dotted lines indicate the 1σ SFR±
and 2σ SFR± regions.

4.5 Constant SFR including cluster evolution and an
observational limit

The models described above do not account for cluster evolution and

the observational limiting magnitude for cluster detection. To show

the consequences of these effects, a galaxy model with conditions

similar to the LMC was generated. The stellar mass of the LMC was

determined by Kim et al. (1998) to be 2.0 × 109 M�. Assuming

a constant SFH leads to a SFR of ≈0.1 M� yr−1, which we used

in our model. The cluster-disruption parameter is t4 = 7.9 × 109 yr

(Boutloukos & Lamers 2003) and the flux limit isMlim = −3.5 mag

(Hunter et al. 2003) in the V band. The generated data and the results

are shown in Fig. 9.

Because of the weak tidal field, clusters evolve only slowly and

the high mass end of the clusters is similar to the case without cluster

evolution. The effect of the observational limit is clearly visible as

a cut-off in the lower part of the cluster distribution. The minimum

observable mass increases with time due to the luminosity evolution

of the clusters.

As in the previous models, the reconstructed SFH deviates from

the input value at young ages because of the small number of for-

mation epochs used for averaging. Then, there is a period of good

agreement, until some formation epochs contain no clusters any

more. Due to the cluster evolution, the clusters of these epochs are

dissolved or have lost such a large fraction of their stellar content

that they cannot be detected. Therefore, the reconstructed SFH now

shows two branches corresponding to the upper and lower limit.

Assuming that no detection of a cluster means that there was no

star formation activity leads to the lower limit. Using the detection

limit as the mass of the most massive cluster gives the upper limit.

The true SFH lies between both limits, which is indeed confirmed:

until the branching of the upper and lower limit, the 1σ SFR± region

contains the reconstructed SFH. From this point on, only a rough
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estimate of the SFH can be obtained. From the input SFH, a total

stellar mass of 1 × 109 M� was built up. The upper and lower limit

reconstructed 0.78 × 109 and 1.74 × 109 M�, embracing the model

value. That the reconstructed mass range contains the known input

value constitutes a consistency check.

5 C O N C L U S I O N S A N D S U M M A RY

Based on the assumption that all stars form in star clusters, it is

possible to explain the relation between the brightest clusters in

a galaxy and the present SFR, assuming that the brightest clus-

ter is also the most massive. During a formation epoch lasting for

≈10 Myr, a complete population of star clusters is formed. The mass

of the most massive cluster obeys a distribution function that can ac-

count for the scatter in the Mmax(SFR) relation. The SFH of a galaxy

can then be seen as a sequence of formation epochs. Starting from

this, we presented a new method to derive SFHs using star clusters

taking into account the statistical properties of the most massive

cluster as well as their dynamical evolution.

The method was tested for a number of model SFHs for which

synthetic cluster populations were created. The tests show that our

method is capable of reproducing the modelled SFHs if they are

only slowly varying or have bursts which are well separated. To

be resolved, the time between two short-time bursts needs to be

longer than 0.5 dex, the time over which it is averaged. However,

the typical uncertainties in the age determination and the need for

averaging do not allow a shorter averaging window. Artefacts result

from averaging over too few small age bins and from missing data

at high ages. The example SFHs show to which degree our method

can be used to make confident statements about the SFH of a galaxy.

A model including realistic conditions for observation and cluster

evolution also leads to good agreement between the input and the

reconstructed SFH. In following contributions, we will apply this

method to the galaxies, LMC, SMC, M51 and M101. For the LMC,

we will compare this new method to the results obtained using the

CMD method.
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